put()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//判断是不是未初始化,没初始化则初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//判断数组位置是否有值,没有则新建Node赋值
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
//有值则需要遍历Node加入,根据链表或红黑树不一样
else {
Node<K,V> e; K k;
//如果Key和数组Node的key一致,则直接替换value
//赋值e等于当前节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果是红黑树,则添加到红黑树中
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//不是红黑树则是链表,加入到链表中
else {
//循环遍历链表,
for (int binCount = 0; ; ++binCount) {
//当前节点子节点没有数据了,则到了末尾了,直接加入,
//然后判断是否需要转红黑树,需要转则转化
//赋值e=下一个节点
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//如果下一个节点与当前key相等的节点,返回找到的节点
//e:下一个节点
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
//如果都没有找到,则说明此节点不匹配,继续寻找下一个节点
p = e;
}
}
//找到的节点不为空的话,则说明原来是有值的,需要替换,这里就是替换值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//如果需要扩容,则扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

resize()

首先是第一次resize()是分配空间的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
//第一次table为空的,oldCap肯定为空
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//这里分两种情况,
// 情况1 若为默认构造器,threshold 不会被分配数据,为空
// 情况2 若为指定初始容量传入,则threashold为第一次的应有容量 如 new HashMap(5),则threashold为8(向2^n靠拢)
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
//...省略了,不会走这里
}
//情况2走这里
else if (oldThr > 0) // initial capacity was placed in threshold
//newCap=8 newThr=0
newCap = oldThr;
//情况1走这里
else { // zero initial threshold signifies using defaults
//newCap=16 newThr=12
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}

//情况2进这里重新分配 newThr=6
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//指定目前扩容阈值 情况1为12,情况2为6,
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
//省略了,第一次oldTab就是null
}
return newTab;
}

然后后续扩容resize(),以默认构造器扩容为例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
final Node<K,V>[] resize() {
//备份旧数组16
Node<K,V>[] oldTab = table;
//旧数组长度16
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//旧扩容阈值12
int oldThr = threshold;
//
int newCap, newThr = 0;

//旧数组大于0,走这里,后面两个if都不走了
if (oldCap > 0) {
//超不过最大值2^30, 不管
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//新容量newCap和新阈值newThr扩大一倍,分别为32,24
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0)
//处理带初始容量的构造器情况,不走了
newCap = oldThr;
else {
//处理默认构造器情况,不走了
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//处理第一次初始化容量,不管
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//赋值新的阈值24
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
//创建新的数组,并分配给数组table
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//迁移旧数据
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
// j 为数组指针,不为空则迁移,为空则跳过
if ((e = oldTab[j]) != null) { //赋值e为数组位置根节点
//置空旧数组对应位置
oldTab[j] = null;
//节点下没有子节点了,则直接迁移到新数组对应新位置
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;

//红黑树则迁移红黑树
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);

//链表则迁移链表
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}